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Outline

• Background on exchange biasing
– Definitions and models
– Approach

• Experimental details
– System choice
– Measurement geometry for neutron scattering experiments

• Experimental results
– Perpendicular coupling of AF and F spins
– Inequivalence of TN vs TB

– Connecting perpendicular coupling to blocking temperature and biasing 
behavior

• Theoretical interpretation
– Dzaloshinski/Moriya exchange
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Background-Exchange Bias or Anisotropy

• Main features
– AFM in direct contact with FM
– Cool system in magnetic field, 

through AFM Néel
temperature

– Observe unidirectional shift 
along field axis

• Issues
– Increase in coercivity?
– Asymmetries in loop shape?
– Onset of shifted hysteresis 

loops vs Tn?

• Uses in spin valves, read head 
sensors Meiklejohn and Bean, Phys. Rev. 102, 

1413 (1956).
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Earliest model: Meiklejohn, Bean

AFM

FM

Field cooled Field reversed

• Works well for a very well characterized system:  Fe/Cr multilayers
– Jiang, Felcher, Inomata, Goyette, Nelson, and Bader, PRB 61, 9653 (2000)

• In general:
– difficulties with size/temp. dependence/direction of shift
– issues on thickness/growth/roughness/interfacial dependence
– questions about the nature of exchange
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Models based on random field approach

• Essential features
– AFM at interface mostly compensated, broken into domains with a net 

uncompensated moment
– Cooling field aligns all uncompensated moments 
– Imry and Ma, PRL 35, 1399 (1975); Malozemoff, JAP 63, 3874 (1988). 

• Experimental verification: moments, domains
– Kappenberger, Martin, Pellmont, Hug, Kortright, Hellwig, Fullerton, PRL

91, 267202 (2003)
– Miltenyi, Gierlings, Keller, Beschoten, Gunterrodt, Nowak, and Usadel, 

PRL 84, 4224 (2000)
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Models based on spin flop coupling

• Essential features
– FM spins align perpendicular to AFM easy 

axis, analogous to AFM in high magnetic 
field

– Domain wall parallel to the interface
– Hinchey and Mills, PRB 34, 1689 (1986) and 

Koon, PRL 78, 4865 (1997).

• Problems
– Works for x-y spins, not Heisenberg, leading 

to coercivity not bias
– Compatibility with random field model?
– Schulthess and Butler, PRL 81, 4516 (1998); 

Stiles and McMichael, PRB 59, 3722 (1999)
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Experimental approach

• Many exchange biasing issues centered on either the antiferromagnet
or the interface spins

– orientation of spins
– temperature evolution
– nature of domains

• Techniques to probe the antiferromagnet, (buried) interface
– use large single crystals of AFM/companion samples
– image with spin-polarized STM
– x-ray magnetic circular dichroism
– Neutron scattering

• Approach: to use neutron diffraction and reflectivity techniques along 
with other magnetization probes to correlate behavior
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Fe3O4/CoO system

•Good growth due to structural match
-(Fe3O4 100 Å)/(CoO 17-100 Å)x50
-(CoO 30 Å/MgO 30 Å)x333 on MgO

(00l) planes

CoO (MgO)
Rock salt
2a = 8.508Å

(8.424 Å)

Fe3O4
Spinel
a=8.398 Å

•Magnetic properties 
-Bulk CoO orders AFM at 291K, planes 
alternate in <111> directions, 3.9 µB on Co+2

-Bulk Fe3O4 orders ferrimagnetic at 858 K, 
net moment 4.2 µB

•Composite system shows bias
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Scattering geometry

Scattering plane

35o

(111)
(220)

(222)

Growth axis 
[00l] 
direction

H || [110]

Growth 
plane

H || [110]

(113)

25o

(331)

•Measure AFM reflection or FM reflection 
or low angle reflectivity 
-vary field cooling preparation (0 to 50 kOe)
-vary temperature (10-550 K)

•Experiments at NIST Center for 
Neutron Research
-BT2, BT9, SPINS for diffraction
-NG1 for reflectivity

H || [100]
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AFM spin directions for CoO

• New moment directions, substantially different from bulk
• Spins constrained within sample growth plane
• Observed for both Fe3O4/CoO and CoO/MgO superlattices

H [110]

[001]

[110]

(111)(111)

(111)

(111)

growth 
plane

--

-

-

-

Ijiri, Borchers, Erwin, Lee, van der Zaag, Wolf, PRL 80 (608), 1998
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AFM/FM perpendicular alignment

• AFM spins are preferentially 
perpendicular to FM spins

• Effect not observed for 
CoO/MgO superlattice

field along [110]
zero field
field along [110]
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Data to extract TN

• 2 component line shape to reflection
– Broad-Fe3O4 contribution
– Narrow-CoO contribution
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• TN increases with decreasing 
CoO thickness
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Comparison of TN to TB

• TB from SQUID magnetometry shows opposite trend to TN
-van der Zaag, Ijiri, Borchers, Feiner, Wolf, Gaines, Erwin, Verheijen, PRL 84
(6102), 2000

• Reduced TB not a finite size effect of TN
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AFM behavior associated with TB

• Below TB, preferred 
AFM directions appear 
locked in

• Above TB, AFM 
directions randomized
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Perpendicular coupling and TB

• Track (111) intensity vs. temp. 
with and without field treatment

• Observe peak~ plateau 
corresponding to TB

• Unlocking of spins from 
preferential perpendicular 
coupling direction at TB
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Behavior for TB~TN

• Field preparation 
memory despite re-
randomizing the CoO 
above TN

• Evidence of response 
to Fe3O4
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Character of AFM, FM domains

• Similar to random field model, little 
evidence of twists, changes in average 
domain sizes
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•Few changes on field cycling
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Theoretical understanding

• Experimental results:
– Perpendicular coupling clearly associated 

with biasing-connection to TB

– Otherwise random field like

How to connect the two?

• Role of anisotropic exchange term?
– EA-F= -JA-FSA•SF+DA-F•(SAxSF)
– Dzialoshinski, Sov. Phys. JETP 5, 1259 (1957); Moriya, Phys. Rev. 120, 91 (1960)
– D term from spin orbit coupling and superexchange interaction
– Nonzero for noncollinear spins
– Nonzero only for low/broken symmetry
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D-M exchange for biasing

• Recent simulations
– Calculate energy difference for 2 

configurations ~ 2(Dz
net)sin θ for one unit

– D/J ~ .3, Heisenberg spins, randomized 
bias comparable to Ising spins, random 
field model

– Size effect to coupling directions-leads to 
coercivity

– Schulthess, MRS Symp. Proc. 346, 31 
(2003).

A

dE
J A⋅

/D J

FM

AFM

FM

AFM

vs.
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DM exchange for Fe3O4/CoO

• Consider interface
– CoO domains longer range
– Fe3O4 domains shorter due to 

antiphase boundaries
– Hibma, et al., JAP 85, 5291 

(1999)

• Tetrahedral irons can have 
significant DM exchange Layer 1:  CoO

Layer 2: Fe3O4

O

O

Co

Feoct Fetet
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Conclusions and Further Work

• Summary of main results for Fe3O4/CoO system
– Preference for perpendicular coupling of FM and AFM spins
– Inequivalence of TN vs TB

– Association of TB with the unfreezing of perpendicular coupling
– Results consistent with a model of anisotropic exchange

• Implications of work
– Interfacial spins can be very different from the bulk
– Need for more sophisticated exchange considerations

• Further work to explore model of anisotropic exchange
– Quantitative match?
– Density of antiphase domains, etc. vs. size of bias?
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